

1. Área de Aritmética.

- Números Primos.
- 1.1 Dado el número 260, ¿cuál es su correcta descomposición en factores primos?
 - a) 2 x 2 x 5 x 13
 - b) 4 x 5 x 13
 - c) 2 x 10 x 13
 - d) 2 x 5 x 26
- Operaciones con Números Enteros.
- 1.2 El resultado de operar 15 + (20 \div 4) (2 x 3²) + (6 x 6⁻¹) es :
 - a) 33/4
 - b) 3
 - c) $8 \frac{1}{4}$
 - d) 0
- > Operaciones con Racionales.
- 1.3 Cuando ejecutamos la operación $\frac{1}{2} \left[\frac{3}{5} + \frac{2}{3} \right]$ obtenemos:
 - a) $2\frac{8}{15}$
 - b) $\frac{29}{30}$
 - c) $\frac{19}{30}$
 - d) $\frac{14}{15}$
- > Sistema Binario.
- 1.4 El número 15 escrito en base 10, se representa en base 2 como:
 - a) 1001
 - b) 1101
 - c) 1011
 - d) 1111

2. Área de Álgebra.

- > Operaciones Básicas.
- 2.1 Al dividir $18x^3y^4 + 6x^2y^2 + 12xy$ entre 2xy, obtenemos:

a)
$$18x^2y^3 + 6xy + 3$$

b)
$$9x^2y^3 - 3xy - 6$$

c)
$$9x^3y^4 + 3xy + 6$$

e)
$$9x^2y^3 + 3xy + 6$$

- > Factorización.
- 2.2 La factorización más completa de la expresión 6xy 15qz + 6xq 15yz, es:

a)
$$(15z - q) (6x + y)$$

b)
$$(6x - y)(15z + q)$$

c)
$$(y + q)(6x - 15z)$$

d)
$$6x(y + q) - 15z(q + y)$$

- > Binomio de Newton.
- 2.3 El tercer término de $(x + y)^5$ es:

a)
$$10x^2y^3$$

b)
$$10x^3y^2$$

c)
$$5x^3y^2$$

d)
$$5x^2y^3$$

- > Teoría de Ecuaciones.
- 2.4 A la ecuación $x^2 x 6 = 0$ la satisfacen los valores de x:

$$a) - 2 y 3$$

- b) Únicamente 2
- c) Únicamente 3

$$d) - 3 y 2$$

- Racionalización.
- 2.5 Si racionalizamos la expresión $\frac{1}{\sqrt{a} + \sqrt{b}}$ obtendríamos la expresión:

a)
$$\frac{\sqrt{a} - \sqrt{b}}{a + b}$$

b)
$$\frac{\sqrt{a}-\sqrt{b}}{a-b}$$

c)
$$\frac{\sqrt{a} + \sqrt{b}}{a + b}$$

d)
$$\frac{\sqrt{a} + \sqrt{b}}{a - b}$$

- 3. Trigonometría.
- > Triángulo Rectángulo.
- 3.1 Si la altura de un triángulo equilátero mide 2 unidades, entonces sus lados miden:

a)
$$4\sqrt{3}/3$$
 unidades

b)
$$\sqrt{3}$$
 unidades

c)
$$\sqrt{3}/3$$
 unidades

d)
$$2\sqrt{3}/3$$
 unidades

3.2 Para el triángulo rectángulo a = 1, b = 1 y $\gamma = 90^{\circ}$:

a)
$$c = 2\sqrt{2}$$
; $\alpha = 45^{\circ}$; $\beta = 45^{\circ}$

b)
$$c = 2\sqrt{2}$$
; $\alpha = 50^{\circ}$; $\beta = 40^{\circ}$

c)
$$c = \sqrt{2}$$
; $\alpha = 40^{\circ}$; $\beta = 50^{\circ}$

d)
$$c = \sqrt{2}$$
; $\alpha = 45^{\circ}$; $\beta = 45^{\circ}$

- Triángulos Oblicuángulos.
- 3.3 La solución del triángulo oblicuángulo con b = 47, α = 48 $^{\circ}$ y γ = 57 $^{\circ}$ (aproximando al entero más cercano) es:

a)
$$c = 36$$
; $a = 41$; $\beta = 75^0$

b)
$$c = 36$$
; $a = 41$; $\beta = 65^{\circ}$

c)
$$c = 41$$
; $a = 36$; $\beta = 75^{0}$

d)
$$c = 41$$
; $a = 36$; $\beta = 65^{\circ}$

- Aplicaciones.
- 3.4 Un leñador ubicado a 200 pies de la base de un árbol, observa que el ángulo entre el suelo y la parte superior del árbol es de 60⁰. Entonces la altura del árbol es:

a)
$$3\sqrt{200}$$
 pies

b)
$$30\sqrt{2}$$
 pies

c)
$$200\sqrt{3}$$
 pies

d)
$$\sqrt{1800}$$
 pies

- Teoría de Conjuntos.
- Terminología General.
- 4.1 Si un conjunto se expresa de la forma A = { a, e, i, o, u }, decimos que está expresado de forma:
 - descriptiva o por comprensión
 - b) enumerativa o tabular
 - gráfica
 - d) taquigráfica
- Subconjuntos.
- 4.2 El número de subconjuntos de un conjunto cualquiera está dado por:

 - a) 2^n , donde \mathbf{n} es la cardinalidad del conjunto b) n^2 , donde \mathbf{n} es la cardinalidad del conjunto c) 2^n , donde \mathbf{n} es el número de formas de expresar el conjunto d) n^2 , donde \mathbf{n} es el número de formas de expresar el conjunto

- Operaciones Básicas.
- 4.3 Dados A = $\{1, 2, 3, 4\}$ y B = $\{3, 4, 5, 6\}$ el resultado de $(A \cap B) A$ es :
 - a) {1,2}
 - b) {5,6}
 - c) {1,5}
 - d) {}
- 5. Lógica Proposicional.
- > Conceptos y Definiciones.
- 5.1 A toda expresión gramatical que puede ser falsa o verdadera, la denominamos:
 - a) proposición matemática
 - b) oración aseverativa
 - c) interjección
 - d) fractal
- 5.2 A las proposiciones que tienen el mismo valor de verdad, las denominamos:
 - a) muy parecidas
 - b) iguales
 - c) lógicamente equivalentes
 - d) ilógicas
- Valores de Verdad.
- 5.3 La proposición compuesta: "La capital de Guatemala es Guatemala o, la capital de Colombia es San Salvador" es:
 - a) a veces falsa, a veces verdadera
 - b) verdadera
 - c) falsa
 - d) mayormente falsa
- 5.4 Si al realizar la tabla de verdad correspondiente a una proposición matemática obtenemos a todas las posibilidades como falsas, entonces decimos que es una:
 - a) tautología
 - b) contingencia
 - c) mentira
 - d) contradicción

HOJA DE RESPUESTAS

1.1	a
1.2	b
1.3	c
1.4	d
2.1	d
2.2	c
2.3	b
2.4	a
2.5	b
3.1	a
3.2.	d
3.3.	c
3.4	c
4.1	b
4.2	a
4.3	d
5.1	a
5.2	c
5.3	b
5.4	d