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ABSTRACT
As the Digital Ecosystems are growing in use and in pop-
ularity, the need to boost the methods concerned by their
interoperability is growing as well; making thus trustworthy
interactions of the different agents (e.g., network systems) a
priority. In our work, we focus on “soft trust”, that is trust
management systems that can be based on experience and
reputation. Each trust system defines how they evaluate the
trustee experience. The observations of the trustee behav-
iors are added to the trustee experience. Furthermore, most
of the works dedicated to trust estimations in different kinds
of ecosystems are based on local observations through mon-
itored entities. No formal approaches have been defined for
distributed monitored elements by considering several points
of observations. This is what we intend in this work. We
propose to use distributed network monitoring techniques to
analyze the packets that the truster and trustee exchange in
order to prove the trustee is acting in a trustworthy manner.
A formal approach is defined to express trust properties and
to evaluate them on real execution traces. Our approach
is applied on DNS traces for assessing the trust among the
entities.

Categories and Subject Descriptors
H.4 [Security & Privacy]: Trust & Risk; C2.3 [Network
Operations]: Network Monitoring; F.4.3 [Mathematical
Logic and Formal Languages]: Formal Languages

General Terms
Trust Management
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Trust systems, Network monitoring, Formal methods
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Internet has become one of the most popular ways to
socially interact, make commerce, and create collaborative
work. With time, the collaborative aspect, supported by
Internet has evolved bringing new tools, methodologies and
concepts.

The Digital Ecosystems is an emerging concept that in-
volves human individuals, information services as well as
network interaction and knowledge sharing tools along with
resources as described by [4]. As the Digital Ecosystems
are growing in use and in popularity, the need to boost the
methods concerned by the interoperability is growing as well;
making thus trustworthy interactions of the different agents
(i.e., systems) a priority.

These concepts of trust have been brought to computer
science. The systems need to interact with users and with
other applications. The decision regarding with who and
how to interact with other users or applications depend on
each application or system. One of the first works that intro-
duced trust as a computer science concept is the one realized
by [20]. In this work they assign a range of trust and dis-
trust going from -1 to 1. While these fuzzy logic values are
very intuitive for the characterization of trust as a computer
science concept; this is a first interesting way of formalizing
trust concepts. Instead of using a binary approach of com-
plete trust these values are considered as fuzzy logic values.
Fuzzy logic variables or values handle the concept of partial
truth. For example to describe “how black is a gray color”,
you can use these type of values; a 0.1 value will indicate
a pale gray. The same concept applies for a trust value
of 0.95, this means a strong trust from the truster to the
trustee. Many systems have adopted this methodology as
well. For example, in the works realized by [24, 19, 26] the
functions of trust associate the trust and distrust values on
the same ranges, the closed interval from minus one to one.

There are many definitions of trust in the literature, but
the one we adopt here is the one commonly applied and
defined in [10] “the firm belief in the competence of an entity
to act dependably, securely, and reliably within a specified
context”.

From the definition we note that it involves several factors:

• The truster trusts an entity called the trustee. This
implies a mechanism for identification or authentica-
tion.

• Belief is a subjective concept for the truster. It is re-
garding an expectation on the future, but, it could be



influenced by the past events with the trustee, i.e., ex-
perience.

• The truster expects behaviors from the trustee. Be-
haviors considered dependably, secure and reliable.

• A trustee might have different levels of trust for differ-
ent contexts.

The statements presented above are very important. From
those points, many researchers have created many approaches
of trust. For instance, several trust management systems use
security policies and authentication in order to provide the
concept of trust. In these types of systems the entity called
trustee is related to an authentication mechanism. The pol-
icy languages express the actions allowed for each trustee.
This is called “hard trust” because the actions can only be
permitted or denied.

In our work, we focus our efforts on ”soft trust”, that is
trust management systems can also be based on experience
and reputation. Each trust system defines how they evalu-
ate the trustee experience. The observations of the trustee
behaviors are added to the trustee experience. Furthermore,
most of the works dedicated to trust estimations in different
kinds of ecosystems are based on local observations through
monitored entities. No formal approaches have been defined
for distributed monitored elements by considering several
points of observations. This is what we intend in this work.

In our paper we provide feedback regarding the behav-
ior of a trustee. Furthermore, we aim at providing trust
information in a generic way so any generic framework can
use the information about these behaviors and incorporate it
into the trust estimation process. It is our point of view that
trust systems will benefit from different techniques inputs.

In this work, we propose to use distributed network mon-
itoring techniques to analyze the packets that the truster
and trustee exchange in order to prove the trustee is acting
in a trustworthy manner.

Our main contributions are the following:

• We define a formal model to express trust properties
in network ecosystems.

• We propose a distributed monitoring approach to an-
alyze trust properties in distributed networks.

• We successfully apply our methodology to a DNS use
case scenario.

As stated before we applied our method to verify the DNS
responses. We can probe that these responses are manipu-
lated or altered and thus conclude about the trustworthiness
of the server responding the queries from the DNS resolver.

The remainder of the paper is organized as it follows. We
depict in Section 2 the works related to our proposed ap-
proach. In Section 3, we describe the main issues in dis-
tributed systems regarding trust and monitoring. Then, the
formal model allowing to express the trust properties is de-
fined in Section 4.2. The approach is therefore experimented
in Section 5.3 and the results analyzed. Finally, we provide
some perspectives and conclude in Section 6.

2. RELATED WORKS
Many trust management systems are based on security

policies. For example, pioneering systems like PolicyMaker[3],

KeyNote[2], REFEREE[6] and SD3[13]; have presented trust
management systems based on security policies. These type
of systems work by exchanging credentials and applying the
security policies to the authenticated entities. These systems
have several advantages. However, they are not generic and
force users to adopt certain authentication mechanisms and
policy languages.

A more generic work is presented by TrustBuilder2[15].
In this work the authors presented a generic and extensible
framework for authentication and security policy exchanges.
The extensible features of the tool should allow interaction
between their tool and information provided by an external
module. For example, the trust information provided by the
use of distributed network monitoring. We agree philosoph-
ically on a generic and reconfigurable framework is the best
path to make existing software incorporate trust notions.

Other frameworks based on security policies have been
presented. The framework called XeNA was presented in
[12]. In this work the authors propose to use eXtensible
Access Control Markup Language (XACML) for access con-
trol management. Trust with security policies is considered
“hard trust”; because of the rigid concept of only accepting
certain entities and under certain situations.

There are other works that use less rigid parameters of
trust. Systems that incorporate notions of trust as an expe-
rience/reputation concept have been proposed as well. For
example, the work realized by [23], the authors applied these
concepts to mobile ad-hoc networks (MANet). They mon-
itor the behaviors of the neighbor nodes and keep local in-
formation of those interactions. Also they share this infor-
mation to other nodes on the network. Using both local
and remote information they can calculate how trustworthy
a node in the network is.

In [19, 26], the authors created TRUST-OrBAC. In this
work the authors propose to add an experience module on
top of the security policy engine. We also share the idea
that trust systems should incorporate different approaches
of trust. Another interesting work that combine different ap-
proaches to provide trust information is the work presented
in [11]. The authors build a tool called SULTAN. This tool
incorporates also notions of risk into its design, quantify-
ing risk and actually applying these notions into their trust
evaluation algorithms.

To the best of our knowledge, none of the systems or
frameworks use distributed network monitoring in order to
provide trust information. All the exposed works provide
a view only with the systems interactions between truster
and trustee. If beyond the observation of a satisfactory be-
havior the system is not acting in a trustworthy manner,
then, these type of systems will not be able to detect this
behavior.

3. DISTRIBUTED NETWORK MONITOR-
ING APPROACH

Network monitoring is the technique of analyzing the pack-
ets transmitted over the network. Analyzing a packet (a
DNS query, a DNS response, etc.) is to access the data
inside that packet and search for particular values. These
values are fields defined depending on the protocol.

In this paper, we assume that the network packets are
being forwarded from the different sources of interest to a
monitoring server. Each of these sources are network enti-



ties monitored though interfaces called points of observation
(PO). We also assume that if the network entity has many
interfaces, all the forwarded packets from the same network
entity will be considered the same point of observation [18].

The sequence of packets from a point of observation is
called a network trace. A network trace (trace for short) is
potentially infinite. When we have different traces from the
points of observation, we can analyze the packets from one
trace and create a relationship to another trace, defining the
concept of distributed network monitoring.

With the use of distributed network monitoring, we can
see behaviors, that when using a single point of observa-
tion will not be possible to see. Several works like [28, 25,
16] using different approaches have exposed intrusion detec-
tion systems (IDS) that are collaborative or distributed as
a solution to detect possible attacks (such as, to detect a
distributed denial of service (DDoS)). Collaborative or dis-
tributed IDSs can observe that different hosts located at
different networks are sending network packets to the final
common target. Thus, concluding that a distributed denial
of service attack occurs.

Many other behaviors can be constructed from distributed
network monitoring. The complete scenario is revealed when
relationships are created from different network traces. These
relationships are created with the packets fields and condi-
tions that hold over those fields in regards of other packets.

Please note that for the time relationships, we assume
the network traces are synchronized using the NTP protocol
[21]. Aside from this relationship between the packets, we
can compare the value of these observations with constant
values or variable values. The variable values are extracted
from other packets. Since there are multiple network traces
from multiple PO, the comparisons can be done from:

1. A specific network trace, that is through, a specific
point of observation.

2. Any network trace, that is, any point of observation.

By using the packet relationships and comparing the val-
ues will result in a composition of what we will call a “trust
property”on the monitored system. Once the desired trust
properties are checked on the network traces, we can give a
verdict regarding the checked trust property. The possible
values are pass, fail if the statement is present. If the trust
property does not reach a verdict, then, the result will be
inconclusive. These concepts will be formally defined in
the following section.

4. FORMAL APPROACH

4.1 Basics
A communication protocol message is a collection of data

fields of multiple domains. Data domains are defined either
as atomic or compound [5]. An atomic domain is defined
as a set of numeric or string values. A compound domain is
defined as follows.

Definition 1. A compound value v of length n > 0, is
defined by the set of pairs {(li, vi) | li ∈ L∧vi ∈ Di∪{ε}, i =
1...n}, where L = {l1, ..., ln} is a predefined set of labels and
Di are data domains. A compound domain is then the set
of all values with the same set of labels and domains defined
as 〈L,D1, ..., Dk〉.

Once given a network protocol P , a compound domain
Mp can generally be defined by the set of labels and data
domains derived from the message format defined in the pro-
tocol specification/requirements. A message of a protocol P
is any element m ∈Mp.

For each m ∈ Mp, we add two fields: a real number
tm ∈ R+ which represents the time when the message m
is received or sent by the monitored entity and PO a string
label which represents the point of observation from which
the message m is collected.

Example 1. A possible message for the DNS protocol
[22], specified using the previous definition could be

m = {(time, ‘863.596183000’), (PO,Auth DNS Srv)
(query id, 6912), (flags, {(response, 0),
(opcode, std query), (truncated, 0), (recursion desired, 1),
(reserved, 0), (non auth data acceptable, 0)}),
(questions, 1), (answers, 0), (authority RRs, 0),
(additional RRs, 0), (queries,
{(name, telecom-sudparis.eu), (type,A), (class, IN)})}

representing a DNS query for the domain telecom-sudparis.eu.
The value of time ‘863.596183000’ (t0 + 863.596183000) is
a relative value since the PO started its timer (initial value
t0) when capturing traces.

A trace is a sequence of messages of the same domain con-
taining the interactions of a monitored entity in a network,
through an interface, i.e., the PO, with one or more peers
during an arbitrary period of time. The PO also provides
the relative time set T ⊂ R+ for all messages m in each trace.

4.2 Syntax and Semantics of our formalism
As described in the 3 section, our approach focuses on

applying distributed network monitoring to the trust man-
agement domain. In order to achieve that, we used our
previous work[14]. In this work the syntax and semantics
have been extended to include several POs. The syntax is
based on Horn clauses is defined to express properties that
are checked on extracted traces. We briefly describe it in
the following. Formulas in this logic can be defined with the
introduction of terms and atoms, as it follows.

Definition 2. A term is defined in the Backus Normal
Form (BNF) as term ::= c | x | x.l.l...l where c is a con-
stant in some domain, x is a variable, l represents a label,
and x.l.l...l is called a selector variable.

Example 2. Let us consider the following message:

m = {(time, ‘154.576889000’), (PO,Auth DNS Srv)
(query id, 58921), (flags, {(response, 0),
(opcode, std query), (truncated, 0), (recursion desired, 1),
(reserved, 0), (non auth data acceptable, 0)}),
(questions, 1), (answers, 0), (authority RRs, 0),
(additional RRs, 0), (queries,
{(name, telecom-sudparis.eu), (type,A), (class, IN)})}

In this message, the value of recursion desired inside flags
can be represented by m.flags.recursion desired by using
the selector variable.

Definition 3. A substitution is a finite set of bindings θ =
{x1/term1, ..., xk/termk} where each termi is a term and
xi is a variable such that xi 6= termi and xi 6= xj if i 6= j.



Definition 4. An atom is defined as

A ::= p

k︷ ︸︸ ︷
(term, ..., term)
| term = term
| term 6= term
| term < term
| term > term
| term+ term = term

where p(term, ..., term) is a predicate of label p and ar-
ity k. The timed atom is a particular atom defined as

p

k︷ ︸︸ ︷
(termt, ..., termt), where termt ∈ T .

Example 3. Let us consider the message m of the pre-
vious example. A point of observation constraint on m can
be defined as ‘m.PO = Auth DNS Srv’. These atoms help
at defining timing aspects as mentioned in Section 4.1.

The relations between terms and atoms are stated by the
definition of clauses. A clause is an expression of the form

A0 ← A1 ∧ ... ∧An

where A0 is the head of the clause and A1∧ ...∧An its body,
Ai being atoms.

Definition 5. A formula is defined by the following BNF:

φ ::= A1 ∧ ... ∧An | φ→ φ | ∀xφ | ∀y>xφ
| ∀y<xφ | ∃xφ | ∃y>xφ | ∃y<xφ

where A1, ..., An are atoms, n ≥ 1 and x, y are variables.

In our approach, while the variables x and y are used
to formally specify the messages of a trace, the quantifiers
commonly define “it exists” (∃) and “for all” (∀). Therefore,
the formula ∀xφ means “for all messages x in the trace, φ
holds”.

The semantics used in our work is related to the tradi-
tional Apt–Van Emdem–Kowalsky semantics for logic pro-
grams [27], from which an extended version has been pro-
vided in order to deal with messages and trace temporal
quantifiers. Based on the above described operators and
quantifiers, we provide an interpretation of the formulas to
evaluate them to > (‘Pass’), ⊥ (‘Fail ’) or ‘?’ (‘Inconclu-
sive’). By lack of space, we do not detail here the evaluation
and interpretation of the formal properties on traces. How-
ever, the interesting reader can refer to [14] in which all the
algorithms are defined.

We formalize trust by using the syntax above described
and the truth values {>,⊥,?} are provided to the interpre-
tation of the obtained formulas on real protocol execution
traces. These formulas represent and allow to model trust
properties.

5. EXPERIMENTS

5.1 The Domain Name System
The Domain Name System (DNS) is standardized on RFC

1035 [22], is a hierarchical naming system for network en-
tities. Its most common known use is to associate a do-
main names to numerical IP address; although it can be
used to store several other types of information. It is one
of the most essential services in the Internet. The main

purpose is to make easy for users to remember specific host-
names or service providers. For instance, it is easy to re-
member the name “google.com”, yet, is hard to remember
“173.194.40.167” which is actually one of the IP addresses
associated for that domain name. Moreover, for all the ser-
vices in the Internet, DNS provides information as well, for
example, information about where certain service as the mail
exchanger is located for certain domain.

The functional aspect of DNS as described before is hier-
archical. A domain name consists of labels that are concate-
nated to each other and separated by dots. For example the
domain name “www.example.com” consists of three labels,
“www”, “example” and “com”. The labels hierarchy goes
from left to right, being the rightmost label the one with
the highest hierarchy. The rightmost label is called top level
domains (TLD). The information of the TLDs are stored on
the root DNS servers. The TLD DNS servers have the in-
formation of the authoritative DNS servers for each domain.
The authoritative DNS servers are the servers that have the
official DNS records for a domain.

The domain name resolution mechanism starts with a
DNS resolver. The DNS resolvers asks its local caching DNS
server the domain in question. The caching DNS server is
usually a recursive resolver. It queries the root DNS servers
for the information about the TLD of the domain in ques-
tion. After that it queries the TLD server to obtain the
information about the authoritative DNS server. Then it
continues this recursive process until it reaches an answer.
The final step is to return the DNS resolver an answer.

We shortly described the domain name system in order to
have clear concepts of the problematic we decided to tackle.
In the following subsection we describe the scenario.

5.2 Scenario Description
We choose to tackle the same scenario as chosen by [13]

and [9]; since this is still an open issue on trust and security.
Also, the implications of trust and security on this scenario
can affect all types of end users and systems. The problem
can be described as trusting DNS responses to queries.

The DNS original design does not take into consideration
any concept of trust or security. If the DNS query responses
are modified, it can have severe implications. End users and
systems can be deceived and send data to the wrong desti-
nation. The target is to divert the data from the original
source. The information can be later delivered to the real
destination; the end user or system might not notice any
untrustworthy interaction. End users can be directed to
phishing pages, advertising pages or any other. Moreover,
the system can have a trust management engine in place and
consider all the interactions as trustworthy.

To understand how a DNS response can be changed, we
first analyze the structure of a DNS query and response. A
DNS query has the following relevant parameters: (i) Source
address and source port, (ii) Destination address and desti-
nation port (53), (iii) Query ID and (iv) Query name, type
and class.

The response back includes the same fields. The use of
the query ID is to synchronize/correlate the response back.
Knowledge about three parameters is required to success-
fully spoof a response: the query ID, source port and Desti-
nation address.

Many attacks against the DNS systems have been studied.
The attacks basically work by winning a “race condition”.



The objective is to get the spoofed responses arrive before
the original one. If a specific domain is the target of the
spoofing, the queries can be forced.

On many occasions DNS caches change the records, will-
ingly or not. Possibly, ISPs can do this at their caching
DNS servers; motivated to save bandwidth or to hijack the
non existent domains to forward users to publicity sites. We
consider this case as the caching DNS server is not acting
dependably. We can also consider the case the caching DNS
server is returning the wrong records due to a system failure
or software bug. In this case the caching DNS server lacks of
competence. In [7] the authors analyze many cases including
the hijacking of non existent domains for commercial abuse
and the software implementation errors.

If the caching DNS server is not competent to act depend-
ably, securely, and reliably to return the correct DNS records,
then, it is not acting in a trustworthy manner by definition.
That is the reason why we do not consider entirely a secu-
rity issue. This is a trust issue. Trustworthy interactions
between the DNS caching server and the resolvers is a must.

A DNS security extension, DNSSEC, is proposed at RFC
4033 [1]. In a nutshell, DNSSEC uses electronic signed data.
The signatures are encrypted using asymmetric keys. The
signatures are added in a hierarchical chain. All DNS re-
solvers have the public keys from the root DNS servers. The
DNS resolvers do the chain resolution. This makes a DNS re-
solver also able to verify the returned records actually belong
to an authoritative server. DNSSEC has backward compat-
ibility in mind. This is good, since DNS resolvers can decide
not to implement the DNSSEC verification and they will be
able to continue working despite the fact the authoritative
records implement DNSSEC. However, a true implementa-
tion on the Internet can take many years; because, in order
for it to truly work, a complete change on all internet DNS
authoritative servers and DNS resolvers is needed. A similar
case happens with the IPv6 protocol [8].

By the use of distributed network monitoring we can im-
prove the trustworthiness in the DNS responses. Combin-
ing information from different points of observation allow to
identify situations that with a single observation will not be
possible. This is what we experiment and demonstrate in
the the following detailed DNS scenario.

Let us assume the following case, when an employee is
working at a remote location, let us suppose a public internet
connection on a hotel in another continent. The employee
is using a company application that sends data to a com-
pany application server “domain.tld”. The hotel’s caching
DNS server sends the wrong information to the client com-
puter. The client computer will send the application data to
a third party machine. This third party machine eavesdrops
the communication and then re-routes traffic to the original
destination, that is the company’s application server . Both
the server at “domain.tld” and the client computer will not
detect any malicious behavior. The client computer sends
the DNS traffic to the monitoring server. Also, the authori-
tative DNS server for “domain.tld” sends the DNS traffic to
the monitoring server as well. We illustrate this scenario on
Figure 1.

Two points of observation are in place, PO1 and PO2. In
the point of observation 1, we monitor the DNS responses of
the authoritative DNS server for the domain “domain.tld”.
In the point of observation 2, we monitor the responses
obtained by the resolver, that is the client computer. At

Figure 1: Distributed monitoring of DNS responses

the monitoring server, when the two responses for the same
query are compared, we notice they differ. Then, we can
provide useful information about the trustworthiness of the
hotel’s caching DNS server.

The monitoring server will receive the network traces of
DNS traffic from different sources in order to provide trust
information about different situations. To better illustrate
this behavior we provide a message sequence chart (MSC). In
this MSC, the monitoring server receives information from
two different sources: the DNS resolver, which is at the client
computer and the authoritative DNS server. The messages
can be received in different order at the monitoring server.
The synchronization of the queries is done by the query id
fields and the source of the observations. We illustrate this
in Figure 2. Here is the description of the messages: (1) Au-
thoritative DNS server incoming query for the domain.tld
record. (2) Authoritative DNS server outgoing response
and outgoing referral record for the authoritative server. (3)
DNS resolver outgoing query for the domain.tld record. (4)
DNS resolver incoming response for the domain.tld record.

We use the formal approach and create trust properties
to provide trust information in the following subsection.

5.3 Experiments Studies
In order to simulate the scenario, this can be setup with

one DNS resolver and two DNS servers. One authoritative
DNS server for a domain name and one caching DNS server
that intentionally changes the values of the answers for that



Figure 2: Monitoring server MSC

particular domain. The DNS resolver will use this modified
caching DNS server as its DNS server. Traces can be col-
lected in the DNS resolver and the authoritative DNS server.
Those traces will contain the DNS packets exchanged with
the peers. The DNS resolver will have only one peer, which
is the caching DNS server. The authoritative DNS server
will have many peers, all the caching servers querying for
the domain. Note that any caching DNS server querying
the authoritative DNS server can help provide information
to that network trace. Furthermore, the caching DNS server
that changes the records most probably will not be a peer
in the authoritative DNS server trace. Also, for this case
only DNS packets can be captured, all other traffic can be
discarded. These traces can be provided by many tools like
Wireshark 1. The traces can then be exported at the moni-
toring server. The evaluation of the trust properties at the
monitoring server will then provide the trust information.

We have formally defined two formulas in order to ex-
press trust properties. As described in the scenario, our
target is to guarantee that the responses from the DNS
resolvers match the responses from the authoritative DNS
server. With the use of distributed network monitoring and
our formal specifications we can declare the necessary trust
properties. While the properties have herein bee provided
manually by an expert, they also can be generated auto-
matically if a formal specification is available [29, 17]. After
evaluating them we will provide trust verdicts applied to the
previously described scenario. We describe the trust prop-
erties and then formalize them.

The first trust property is: Φ = “For all responses from
an authoritative DNS server, all future responses from other
points of observation are the same replies of the authorita-
tive DNS server if the queries are the same”. This can be
expressed in the following formula:

Φ = {∀x(req f(x,ADS)) → ∃y>x(res f(y, x,ADS))} →
{∀a(req anf(a, y,ADS))→ ∃b>a(res enf(b, a, y, ADS))}

Where the intermediate clauses are defined such as:

req(x) ← x.flags.response = 0 //req predicate compares
the flag response and if the flag is unset this means packet
x is a request.
res(y) ← x.flags.response = 1 //res predicate compares

1Wireshark homepage http://www.wireshark.org/

the flag response and if the flag is set this means packet x
is a response.
eq q(x, y) ← x.queries = y.queries //eq q predicate com-
pares if the queries of the two packets are equal.
eq a(x, y)← x.answers = y.answers //eq a predicate com-
pares if the answers of the two packets are equal.
from(x, P )← x.PO = P //from predicate compares if the
packet comes from a specified point of observation P.
nfrom(x, P ) ← x.PO 6= P //nfrom predicate compares if
the packet comes from a PO different from P.
after(x, y)← x.time > y.time //after predicate compares
if the field value time of x is greater than the one of y.
resp(y, x) ← res(y) ∧ y.queryid = x.query id ∧ eq q(x, y)
//resp predicate checks if the packet y is a response of packet
x, comparing both query ids.
req f(x, P )← req(x) ∧ from(x, P ) //req f predicate com-
pares if packet x is a request and if it is coming from a
specified point of observation P.
req nf(x, P ) ← req(x) ∧ nfrom(x, P ) //req nf predicate
compares if the packet x is a request and if it comes from
point of observation different from P.
res f(y, x, P ) ← resp(y, x) ∧ from(y, P ) //res f predicate
compares if packet y is a response of packet x and if packet
y comes from the specified point of observation P.
res nf(y, x, P )← resp(y, x) ∧ nfrom(y, P ) //res nf pred-
icate compares if the packet y is a response of packet x and
if packet y comes from a PO different from P.
req a(x, y)← after(x, y)∧ req(x)∧eq q(x, y) //req a pred-
icate compares if packet x occurred after packet y, packet x
is a request and both packets queries are the same.
req anf(x, y, P ) ← req a(x, y) ∧ nfrom(x, P ) //req anf
predicate checks if the request x is after the packet y and
packet x comes from a point of observation different from P.
res enf(x, y, z, P )← res nf(x, y, P )∧ eq a(x, z) //res enf
predicate checks if packet x is a response from packet y, x
comes from a point of observation different from P and it
compares if the answers of x and z are the same.

“ADS” is the assigned label to the Authoritative DNS
server PO (see Section 4.1).

The second trust property is related to the DNS updates.
An update in the DNS values will imply that caching DNS
servers might have the wrong records. However, this is the
expected behavior; the caching DNS servers can have the
wrong values for the validity of the time to live (TTL) of each
record. Even if this is the expected behavior, this means the
caching DNS server has untrustworthy records. In this work
we do not focus on how to measure or interpret the trust in-
formation we provide. Nevertheless, this information could
be used by caching DNS servers to re-query the authorita-
tive DNS server when a change in the records is performed.
We will consider that a caching DNS server with the wrong
DNS records can still be trustworthy if the following trust
property holds: Ψ =“For all responses from an authoritative
DNS server, if it exists a future response from other points
of observation that is not same response of the authoritative
DNS server and the queries are the same. Then, a previous
authoritative DNS response with the same value as the con-
flicting response must exist; also, its TTL should be bigger
than the difference between the conflicting response and the
previous authoritative response”. This can be expressed by



the following formula: Ψ = {(α→ β)→ γ}

Where the intermediate clauses are:

α = {∀x(req f(x,ADS))→ ∃y>x(res f(y, x,ADS)}
β = {∃a(req anf(a, y,ADS))→ ∃b>a(res dnf(b, a, y, ADS)}
γ = {∃m(req bf(m,a,ADS))→ ∃n>m(res eft(m,n, b, ADS))}

For which we define:

ne a(x, y)← x.answers 6= y.answers //ne a predicate com-
pares if the answers of packet x are different from the an-
swers of packet y.
bef(x, y) ← x.time < y.time //bef predicate compares if
packet x occurred before packet y.
ttl a(x, y)← x.anwers.TTL+x.time > y.time //ttl a pred-
icate compares if the field value time to live of x plus the
time at which the packet occurred is greater than the y oc-
currence.
req b(x, y)← bef(x, y)∧req(x)∧eq q(x, y) //req b predicate
checks if packet x occurred before packet y, x is a request
and both packets have the same queries.
req bf(x, y, P ) ← req b(x, y) ∧ from(x, P ) //req bf pred-
icate checks if packet x occurred before packet y, x is a
request, both packets have the same queries and x comes
from the specified PO P.
res dnf(y, x, z, P ) ← res nf(y, x, P ) ∧ nea(y, z) //res dnf
predicate checks if packet y is a response from packet x, y
comes from a PO different from P and the answers of y and
z differ.
res ef(y, x, z, P )← res f((y, x, P )∧eq a(y, z) //res ef pred-
icate compares if packet y is a response of packet x, y comes
from P, and the answers of y and z are the same.
res eft(y, x, z, P )← res ef(y, x, z, P )∧ ttla(y, z) //res eft
predicate checks if packet y is a response from x, y comes
from P, compares if the answers of x and z are the same and
if y time to live plus the time at which the packet occurred
is greater than the time packet z occurred.

We manually applied Φ and Ψ trust properties on a small
network trace containing DNS packets. For this particular
network trace all results from the Φ trust property were >
(‘Pass’). This means that on that network trace no DNS
updates or untrustworthy responses were provided.

6. CONCLUSION AND PERSPECTIVES
In this paper, we propose a formal distributed approach to

monitor and test trust properties by evaluating trust objec-
tives on real distributed traces. While most of the approach
are based on local probes (points of observations or inter-
faces), we define in this work a correlation of the testing
verdicts to evaluate the trust in distributed ecosystems. A
formal syntax and semantics are defined to express trust
properties which are applied on DNS traces through a dis-
tributed use case. Interesting and promising results are pro-
vided.

While our results have been obtained manually, we are
currently extending one of our tool, datamon2 to consider
the distributed points of observations. This tool allows to
take into account a set of functional properties (not some

2http://www-public.int-evry.fr/~lalanne/datamon.
html

trust ones) to check them on a single trace. This should be
able, soon, to take as inputs a set of trust properties and a
set of execution traces contained in our monitoring server.
Furthermore, we note that the traces may be collected by
our server at different periods and then eventually with an
important delay (due to the diverse queries/responses along
the testing time). Thus, it is expected to analyze multi-
ple points of observation and compare the trust properties
against stored statistical results from these multiple points
of observation. It would decrease the delay between the ob-
servations and then the provided verdicts.
Finally, we plan to apply our approach to other digital ecosys-
tems to test trust properties labelled to diverse agents.
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